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PHYSICO-GEOMETRIC INVESTIGATION OF BRITTLE FRACTURE DURING CREEP ~ 

A.A. VAKULENKO and V.YA. KREINOVICH 

A geometrical model of brittle fracture during creep is proposed for 
metals that enables the qualitative dependence of the geometry of a 
typical microcavity in a polycrystal on the given stress level to be 
explained, and enables the distribution laws of the time up to specimen 
fracture to be found, that generalizes the Weibull law. The main idea 
underlying the model being proposed is the representation of the 
microcavity formation process in a material as a spontaneous disturbance 
of symmetry. 

It is known that the brittle fracture mechanism during creep is the formation, growth, 
and coalescence of microcavities that result in macrocrack generation, which separates the 
specimen into parts. Under high-temperature creep conditions at fixed stresses commensurate 
with the material yield point at a given temperature, mainly micropores with sharp boundaries 
(so called w-pores) are observed while circular micropores (or r-pores) are observed in tests 
at lower stress levels /i/. In the latter case the length of the microcavity projection in 
any direction has identical order for different directions; consequently, the microcavities 
being formed are called micropores /2/. For W-pores the properties of a small body domain can 
be distinct in different directions depending on whether this direction is parallel to one of 
the microcavity faces. 

The process of microcavity development under creep conditions results in a loss of local 
symmetry in the initial continuous medium. It is known /3/ that the transition from the 
symmetric to the asymmetric state at once is of low probability, while step-by-step passage is 
more probable when symmetry is partially conserved in the intermediate steps; the transition 
is here all the more probable at each stage, the less the symmetry is disturbed. 

J. The initial symmetry group, i.e, the transformation group of the space G O under whose 
action local properties of the original undeformed medium are conserved, consists of 
translations, rotations, and similarities. The transition to the state that has a certain 
symmetry group G CG o, i.e., the state all of whose properties are invariant under the action 
of transformations of a certain subgroup G of the group G O is most probable. Invariance of a 
state means, in particular, that the microcavity boundary does not change under the action of 
transformations from the group G: i~ a point a is on a microcavity boundary, this boundary 
also contains g (a) for all transformations g~G. Therefore, the boundary contains all 
points g(u) for all g~G, i.e., contains the orbit of the element a relative to the group 
G. The microcavity boundary thereby either coincides with the orbit of the group G~ or con- 
sists of several such orbits. Consequently, to describe all possible kinds of microcavities 
it is sufficient to describe the orbits of subgroups of the group G O 

The transition from the initial state from group G o to a state from group G is all the 
more probable the greater the symmetry in the group G, i.e., the greater the dimensionality 
of the group G (the dimensionality of a group is the minimal number of independent parameters 
needed to describe all the transformations from G). The greatest possible dimensionality of 
G is four /4/; a single orbit, a plane, corresponds to this dimensionality. The group G con- 
sists of similarity (one parameter), translations in the plane (two parameters), and rotations 
in the plane (one parameter). Two different symmetry groups corresponds to the value dim G 
3 a group of rotations around a point (the orbit is a sphere), and the symmetry group of a 
line (translations along the line, rotations around it, and similarity). The second of these 
groups has 3ust two orbits, the line and all the rest of space, consequently, the microcavity 
boundary cannot consist of such orbits. Corresponding to dlm G = 2 are the orbits: a half- 
plane, a circular cone, a right circular cylinder, etc. 

Therefore, during creep the formation of microcavities with plane boundaries (boundaries 
corresponding to the greatest possible symmetry group) is most probable. At successive times 
of the creep process the formation of microcavities of approximately spherical shape is more 
probable. If fracture (the formation of a macrocrack seed) did not indeed occur at this stage, 
then the geometric model being proposed allows the appearance of microcavities of more complex 
shape. 
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The time to fracture is not large for sufficiently high tensile stress levels and only 
microcavities with plane boundaries (w-pores).succeed in being formed. For lower stress 
levels the specimen "lifetime" increases by several orders, consequently, the microcavities 
are smoothed out because of random processes in the material microstructure, and circular 
micropores (P-pores) are formed. Microcavities of more complex shape have not been observed 
experimentally in metals /2/. 

The coalescence of microcavities can also be considered from the viewpoint of a spon- 
taneous disturbance of symmetry. The union of two geometric shapes corresponding to micro- 
cavities has a smaller symmetry group, in general, than each of them. Hence, according to 
the general procedure of a spontaneous disturbance of symmetry, it follows that coalescence of 
microcavities yielding a smaller disturbance of symmetry is most probable. 

Thus, the union of a sphere with a plane has a one-dimensional symmetry group, the union 
of a plane with a plane has a two-dimensional group, and the union of two spheres has a one- 
dimensional symmetry group. Therefore, unions of a plane with a plane, and a sphere with a 
sphere are more probable, resulting in a more probable coalescence of microcavities of w- or 
P-kinds with the same kind of microcavities. Therefore, circular pores are more often inter- 
connected, and not with cavities with sharp boundaries in a real metal specimen where pores 
of both kinds exist at a certain time of the creep process. 

2. Let us use the geometrical results obtained to give a quantitative description of 
brittle fracture during creep. 

The processes of microcavity formation, growth, and coalescence in a material are the 
crux of the latent stage of the fracture process during creep /5/. As a rule, a scalar damage 
parameter ~ is used to describe fracture at this stage. At the macrolevel e characterizes 
"loosening" of the material resulting from the microcavity formation, growth and coalescence 
processes. A fundamental estimation of material loosening at the macrolevel is the relative 
change in material density, which does not ordinarily exceed 1-2% for the whole specimen /6/. 

According to usual representations of the mechanics of a continuous medium /7/, if a 
specimen is partitioned into domains (subvolumes) A t (k = I, 2 .... , N) whose size is much less 
than the specimen size and much greater than the material microinhomogeneity at a certain 
time of the deformation process, the fracture processes in each of the subvolumes are indepen- 
dent of analogous processes in the other subvolumes. In conformity with the brittle fracture 
mechanism noted during metal creep, the probability p (A~) of fracture of each subvolume A~ 
under given external conditions is determined uniquely by the value of the damage parameter 

(A~) for this subvolume p (A~) = F (~ (A~)), where E is a certain function whose form 
depends on the external conditions (stress and temperature). 

Following /7/, we use the principle of the "weakest link" to describe the relation 
between specimen fracture and fracture of the individual subvolumes: fracture of a certain 
domain occurs if and only if its most defective part is fractured. In the case of fracture 
due to microcavity accumulation, this principle means that the subvolumes are fractured due 
to the most loosened of their parts. Consequently, a specimen is not fractured in 3ust that 
case when none of its subvolumes is fractured. And since the processes are independent in 
the subvolumes, the probability that a specimen will not be fractured until a time t equals 
the product of the probabilities for the subvolumes. If P (t) is the probability that macro- 
fracture of a body under a given external load will be start at a time less than t, we obtain 
that 

N N 

I - -  P ( t )  = ]-[ ( t  - -  p(Ak) ) = I~  ( i  - -  F(¢o (Ak))) (2 . t )  
h --1 h = l  

We will use the physical nature of this parameter to determine ~ (Ak). Material 
loosening appears at the macrolevel in the form of a residual change in the material volume, 
whose fundamental role for the cold (athermal) plastic deformation processes was established 
by Novozhilov /8/. Since the residual change in the volume is much more significant in creep 
processes, it is natural to take an increasing function of the relative inelastic change in 
material volume ~P as the damage parameter. It is most convenient /9/ to use the expression 

(A~) = ln(1 + ev~), for ~, where e~ ~ is the inelastic part of ev, ~v = (Avh-- Avko)/Avko, 
Av~ is the volume of the element A k at a certain time of the process and Avko is the 

volume of the same element at the initial time. We have ~ev v for (8vv)2~1. 
Thus, the fracture process for fixed external conditions is determined uniquely by the 

change in the material volume. In turn, this quantity is determined by the microcavity 
statistics, i.e., their size distribution and is indepdent of the spatial microcavity dis- 
tribution. Consequently, the simplifying assumption that such a distribution is identical 
for all subvolumes of the specimen under consideration can be used in computing the micro- 
cavity size distribution. With this assumption, for sufficiently large Au~ and a quantity 
ev p determined by the microcavity statistics in the domain A~, approximately identical for 



662 

all the subdomains we have Av~ ~ Auk0 (I -~ ~v v) Hence, summing over k we have v ~ v o (I =~ e~.~), 
where u is the specimen volume at the current time of the process, and u 0 is its initial 
volume. The value of ev p for the whole body is approximately identical with the value of 
~v p for the subvolumes; consequetly, even the damage parameter for the whole body is approxi 
mately equal to ~0 (Ak). Then (2.1) results in the value P (t)= I- (I- F (~0))N~ where 
is the damage parameter for the whole specimen. If <Au> is the mean volume of the sub- 
volumes, then N : u ]<Au> from which it follows that 

P (t) = I -- exp (--v/ (o)), /(o) = --In(l -- F)/<Av> (2.2) 

The value of the damage depends, in turn, on time. Substituting this dependence into 
(2.2), we obtain that for a certain function @ (t)=/ (~ (t)) 

P (t) = i - -  exp  (--vcp (t)) (2.3) 

Consequently, it is sufficient to find ~ (t) to determine the fracture time statistics, 
i.e., P (t). 

3. we will consider first the case when mainly w-pores and accumulated in the material 
during creep. The formation of w-pores corresponds to that spontaneous disturbance of sym- 
metry for which syntmetry relative to the change in the length scale is not disturbed. As re- 
marked in Sect.l, invariance relative to similarity is conserved locally during w-pore 
formation. Consequently, the values of all the dimensionless combinations of the body 
characteristics should be independent of what units these characteristics are measured in. 
We will apply this principle thrice. 

For each volume u the time in which the probability of fracture takes a certain given 
value Po, i.e., exp (--v~ (t)) = I -- P0, is denoted by t (v), or 

t (v) = q)-X ( - - l n  ( t  - -  Po)/v) (3.1) 

For any real number ~ the characteristic t (Iv)/t (v) is dimensionless. The passage to 
an m times smaller length unit transfers v into m3v and the scale invariance remarked 
results in the equality t (Iv)/t (v) = t (Iraav)/t (raSv) for any l > 0, m ~ 0, meaning that the 
ratio t (lv)ft (v) depends only on I and is independent of v, i.e. 

t (lv) = t (v) g (l) (3 2)  

for a certain function g (1). To solve the functional Eq. (3.2), we substitute therein first 
x = l, y = v and then x = v, y = l and we obtain that t (Xy) = t (x) g(y) = t (y) g(x) for any 
x > O ,  y>0, from which g(x ) l t ( x )  = g (y ) / t ( y )  = cons t ,  or g(x)  = c o n s t  t (x) and (3.2) takes 
the form t (Iv) = const t (1)t (u). Multiplying both sides of this relationship by const and using 
the notation t o (z) = eonst t (z), we obtain t o (Iv) = t o (l) t o (v)o As is known /i0/, the solution 
of this equation has the form tov~ v', where 8 is a constant; consequently, t o (v)= constv s 
Substituting this expression into (3.1) we have ~ (t) = Cot ~, n = --|/s, C O ~ (const) n In (I -- P0) 
and for such a function @ (t) from (2.3) there follows the Weibull distribution law of the 
time to specimen fracture 

P (t) = t - -  ex p  (--A,t'~), A ,  = CoY (3.3) 

Considering the quantity t (IAv)/t (Av), analogously, where Av = ~v, is the total volume 
of all the microcavities in the domain A, we obtain that Av, meaning also the damage par- 
ameter ~, depends on the time as a power law: ~ = ~ /2/. It hence follows that /(~) 
also depends on ~ as a power law. In fact, the equality ~ (t)=/(~ (t)) holds for all t, 
where ~ (t)= Cot". To find the value of /(~) for aribitrary ~ > 0 we find a t such that 

(t) = ~t a (this t is determined by the formula t = (oj/~)*l~). Then 

/(co) -~ ~ (t (~)) = C,~, n = n/~, Ci = Co~-~ (3.4) 

Considering the dimensionless quantity p (lr)/p (r), where p (r)dr is the fraction of 
micropores of radius from P to r ~-dr on the speciment cut, we obtain that the microcavity 
diameter distribution should also be described by the power law p (r)= Csr-~. 

4. We will now investigate the case when brittle fracture in a metal material occurs 
due to the formation of /'-pores. As is shown in Sect.l, in this case the spontaneous dis- 
turbance of symmetry resulting in P-pore formation also disturbs the invariance with respect 
to similarity. Consequently, in such a situation the scale invariance model described in 
Sect.3 can be considered as a first approximation to a description of the fracture process. 
The inadequacy of the first approximation is manifest, say, i~ the fact that the experimen- 
tally.determined microcavitydiameter distribution law differs substantially from the power 
law described in Sect.3 for their small values. The scale-invariant model of the first 
approximation in which the dependence of ~ on t and of p on P is a power law, is equivalent 
to a linear dependence of in ~ on In t and of In p on In r, i.e., 

~) = f~t~+~ m ,  (4 . t )  

p (r) : exp  [ - - ( A  l n '  r -4- B I n  r -[- C)} (4.2) 
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where u,~, Q, A, B, C depend on the external test conditions. Since the material damage- 
ability during creep is cumulative, the relation ~'($)>0 should be satisfied up to the 
time of fracture; consequently ~0. 

Strictly speaking, (4.1) is inapplicable for large t since ~ (t) starts to decrease 
here. This means that for such t the quadratic terms are inadequate, and terms containing 
expressions cubic in In t must still be taken into account. However, analysis of the ex- 
perimental data shows that the approximation (4.1) is adequate for describing the real fracture 
process. 

The damageability o is defined essentially as the ratio of the volume occupied by 
microcavities to the specimen volume. Consequently, if a random point of the specimen is 
taken (selected in conformity with the uniform probability distribution law for which the 
probability falls into some domain proportional to its volume), the probability that this 
point will fall within a microcavity equals the damageability ~. This same probability can 
be estimated differently by using a plane microcavity size distribution rather than the volume 
distribution. In fact, the random selection described above can be realized in two stages: 
first the oriented plane is chosen randomly, and then the random point in the appropriate 
plane section. A plane cut essentially indicates selection of a randomly oriented plane 
(randomly oriented relative to the microcavities). Consequently, the damageability ~ equals 
the probability that a randomly selected point on a randomly oriented cut will drop into a 
microcavity. Indeed, test results do not contain microcavity size distribution statistics 
for different plane cuts /2, 6/. 

Let us show how the statistics corresponding to just one section can be utilized. All 
the considerations are carried out within the framework of a model in which the microcavity 
volume distribution is assumed to be homogeneous and isotropic. Consequently, the microcavity 
size distribution law on a plane cut, in particular, is independent of the orientation of the 
plane over which the cut is made. In particular, this means ~ equals the probability that 
a point randomly selected in the plane drops into a microcavity on that very cut on which 
there is statistics (from test). The probability is, in turn, equal to the ratio between the 
total area of the microcavities incident in the domain of the cut, and its area S. If ps(r) 
is the microcavity size distribution density on the plane cut, this ratio takes the form 

o~ = n S  -I ~ Ps (r) r ~ d r  
0 

Arguments yielding the foundation of (4.2) result in an analogous formula for the 
dependence ps(r) also. We substitute it into the last integral, after evaluating which we 
obtain 

o = ~'1, ( A S ) - *  e x p  (C - -  (B - -  3 )2 / (4A) )  (4 .3 )  

Experimental data on the micropore radius distribution are actually in agreement with a 
log-normal law /Ii/. 

To determine P (t) we use relationship (2.2) in which o (t) is given by the expression 
(4.1). 

The investigation is performed within the framework of the physical model, according to 
which the fracture probability is determined by only one scalar parameter ~ under given 
external conditions. Consequently, the function ](~) describing the dependence of P (t) 
on a in (2.2) is also defined solely by the external conditions and is independent of the 
microcavity form. It is shown in Sect.3 in the example of fracture due to ~-pores that / (~) 
is a power-law function. Therefore, even in the case of r-pores expression (3.4) can be 
utilized. Substituting it and ~ (t) into (2.2), we obtain the following Weibull law 
modification that is valid for t < ~/(2 I~ ]): 

P (t)  = I - -  e x p  ( - -  A i t  n+n' In t), n = s l a ,  n ,  : s , ~  (4 .4 )  

AS already noted, (4.4) is not applicable for t > ~/(2 I ~ ] ) (terms of the next orders in 
Int must be taken into account for such t), but in practice (see the Appendix), the 
probability that fracture will not occur up to this critical time is small and can be 
negleted completely. 

In the model under consideration n, describes the difference of the distribution law 
from the Weibull law corresponding to scale invariance. In coformity with the singularities 
of the brittle frature process during creep the scale invariance is disturbed for small 
stresses u relative to the yield point at a given temperature. (Consequently n,~O for 
large a, while tendency for the value of n I to grow holds as a decreases. 

5. We will now examine the dependence of the parameters in (3.3), (4.1), (4.4) on a given 
stress. 

If the fracture process is governed by ~-pores (scale invariant case), then In ~ = In ~ ~- 
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d In t, where In &2 and ~ depend on a for a fixed testing temperature. In this case 
the combination/(~ (Is, t))~ (~ (a, t)) must be added to the invariant dimensionless combinations 
utilized in Sect.3. Its analysis results in the power-law dependence of / (~ (s, t)) on o, 
and /(~) according to (3.4) is also a power-law function. Therefore, ~ (~,t) depends in a 
power-law manner on ~ for a fixed t, i.e., the function ]n ~ is linear in each of the 
variables In ~, In t, and for all ~0, t~0 the formula 

l n ( e )  = a + b l n o - 5  (c + d l n a )  l n t  (5.t) 

h o l d s ,  w h e r e  a - 5  b l n  a = l n Q ,  c - s d l n  a = a .  

Substituting (5.1) into (2.2), we obtain that the Weibull law parameters A I and n 
depend on ~ as follows: , = s1(e -5 d ln a), A, = uC, exp (s,a-5slbln ~). 

If mainly r-pores are observed during fracture, then considering (5.1) as a first 
approximation as in Sect.4, we obtain that 

In ~ = a - 5  b l n a - 5  ( c - 5  d l n a )  l n t - 5  (c 1 -5 d, l n a )  ln s t  

plus terms of higher orders in In a and in t. Comparing this expression with in ~ from 
the logarithmic relationship (4.1), we have the dependence of the parameter on the stress 
level: ~ = ~-5 ~ in~. The dependence of n I on ~: n, = s,(c, -5 ~ ina) follows from (4.4). 
As G-~0 we have r,1 i-+-5 oo from the last relationship, i.e., the difference between 
(4.4) and the Weibull law is a maximum for small ~. This difference diminishes as the given 
stress level increases. 

6. A method of predicting the probability of specimen fracture at different times 
follows from the model proposed above. In conformity with (4.1) it is sufficient to find 
three parameters in the dependence of the damage ~ on the time t for this. It is necessary 
to estimate ~ (it) at not less than three instants of time t z and to find ~, ~, and In 
as coefficients in the quadratic dependence in ~ (t~): In ~ (t,) = In Q-5~ in t~ -5~ ln~t, In turn, 
it is necessary to utilize (4.3) to compute ~ (t~). Consequently, to evaluate ~ (t~) it is 
necessary to obtain p (~ the microcavity size distribution, at the specimen cut, and then 
to estimate A~ B, C as quadratic parameters in In r in the dependence for In p (r). 

It should be noted that the physico-geometrical investigation performed above refers to 
the case of body fracture with homogeneous fields 8v p and ~ In the general case, the micro- 
cavity distribution can be considered to be locally-homogeneous, i.e., power-law or log-normal, 
but the parameters of the appropriate distribution laws are already, generally speaking, 
dependent on points of the body, i.e., from physical fields. 

7. Appet~diz. Results of measuring the micropore concentration as a function of the 
radius were known in a section of specimens of 304 stainless steel with a 40-50 ~m grain size 
made at three different times of the creep process and at a time preceding specimen fracture 
(the test conditions were ~= 63 MPa, and ~C = 700 ° /ii/). 

Analysis of these experimental data showed that the three distribution functions p(r) 
are described well by the log-normal law (4.2). Values of A, B, C found to 0.i accuracy are 
presented below, where t= 5 x 105 sec corresponds to the time of fracture, and results are 
also presented of calculations of the damage parameter for the whole specimen, found as the 
total area of all micropores in the section S from (4.3). For t= 0.6 x i05 sec, n ~ --19, B= 
--i 3, C=--9.1,~S= 6.6 xl0 a~m 2, for t = I 3 x i05 sec, A = 45. B= 0.6, C= 3.3,~S = 42 x i0 a ~m 2, for 
t=2.6 xi0 ~ seC,A=2.8. B=0.3, C=3.3. ~S=i30x i~ ~m 2, and for t=5.0 x i~sec, A=3.3. B= 06, 
C =  3.0, and ~ S =  180 x lO ~ ~m ~. 

According to the data in /ii/, In ~ depends quadratically on In t, i.e., ~ (t) is 
described by a log-normal law. This example thereby confirms the validity of (4.1), (4.2), 
and (4.4) and illustrates the development of the model of brittle fracture under creep. 
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COMPLETE CONTROLLABILITY OF LINEAR DYNAMIC SYSTEMS" 

A.I. OVSEYEVICH 

A complete controllability criterion is suggested for a linear dynamic 
system with bounded controls. It is shown that programmed control, 
taking the system from one state to another, can be constructed in 
guasipolynomial form. The problem of constructing such a control thus 
basically reduces to solving a linear system of equations. 

I. One of the fundamental results of control theory is the Kalman criterion /i/, which 
provides the necessary and sufficient conditions of complete controllability of dynamic 
systems of the form 

x ' =  A x + B u ,  x ~ R  n, u ~ R "  ( t . t )  

Here, A . R  n ~ R " , B : R  m ~ R n are time-independent linear operators. The Kalman criterion 
states that the pair of matrices A, B should satisfy the following condition of general 

position: rank(B. AB, ..., An-XB) = ,t 
(1.2) 

b y  

t h e  

This condition ensures that any point ~ ~ R n is reachable from any point ~ ~ R- 
moving along a trajectory of the dynamic system (i.i) with some control u = u(t). 

In this paper, we present an analogue of the Kalman criterion for the case when 
controls u in Eq.(l.l) are bounded, 

I u I < c (~.3) 

and we also provide a technique for constructing a programmed control that achieves a tran- 
sition between states. Given the constraint (1.3), the Kalman condition (1.2) is of course 
totally insufficient for complete controllability. Indeed, if all the eigenvalues of the 
matrix A have strictly negative real parts, then starting from any point ~ ~ Rn and moving 
along the tra]ectories of the system (i.i), (1.3), we will never be able to leave a certain 
bounded set, regardless of the choice of the matrix B. If conversely all the eigenvalues of 
the matrix A have strictly positive real parts, then, say, 0 ~ Rn is unreachable from a 
sufficiently distant point ~ ~ R n 

2. Let us discuss the following theorem, which was first proved in /2/ ~for some further 
results, see /3, 4/). 

Theorem I. For complete controllability of system (i.i), (1.3), it is necessary and 
sufficient that, in addition to the Kalman condition (1.2), we also have 

R e ~ ,  : 0 (2. i)  

where ~i are the eigenvalues of the matrix A. 
Let us explain the need for condition (2.1). To fix our ideas, assume that the matrix A 

has the eigenvalue ~ and 
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